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Examenul național de bacalaureat 2026 

Proba E. c)  

Matematică M_mate-info 
BAREM DE EVALUARE ŞI DE NOTARE  

11 decembrie 2025 

           Simulare 
Filiera teoretică, profil real, specializarea matematică – informatică 

Filiera vocațională, profilul militar, specializarea matematică – informatică 

• Pentru orice soluţie corectă, chiar dacă este diferită de cea din barem, se acordă punctajul 

corespunzător.  

• Nu se acordă fracţiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parţiale, 

în limitele punctajului indicat în barem. 

• Se acordă zece puncte din oficiu. Nota finală se calculează prin împărţirea la zece a punctajului total 

acordat pentru lucrare. 

SUBIECTUL I      (30 de puncte) 
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SUBIECTUL al II-lea                             (30 de puncte) 
 

 

1. 
a) 

1

1

0

x y

x z

y z

+ =


+ = − 
 + =

 2p 

( ) ( )0 0 00, 1, 1 , , 0,1, 1x y z x y z= = = −  = −  3p 



Inspectoratul Şcolar Judeţean Brăila 

____________________________________________________________________________________________________________________________________________________ 

Pagina 2 din 3 

 

b) 

1 1 2 2 2 2 2 2

detA 0 detA 1 2 1 0 1 2 1 0

2 1 1 2 1 1

a a a a

a a

a a a a

+ + +

  =   

+ +

 2p 

( ) ( )

( )( )( )

1 1 1 1 0 0

2 1 1 2 1 0 2 1 1 2 1 0 0

2 1 1 2 1 2 1

1
2 1 2 1 1 0 \ 1,

2

a a a a

a a a a a

a a a a

+   + −  

+ − −

 
+ − −     

 

  

 

 

3p 

c) Pentru 1a = − avem detA 0 = rang 2A ;
1 1

3 0
1 2

= −  
−

 rang 2A= .

1 1 1

1 2 1 0

2 1 0

car = − − = 

−

 rang A=  rang 2A=  

 

 

2p 

( )
( )

0 0 0

1 2 11
, , , ,

2 1 3 3

x y
z x y z

x y

+ = +   +   +
=   =   

− = − −  
 

( ) ( )( ) ( )
22 2 2

0 0 0 1 2

5 5 5 2
1 1 1 1 0 1 1 0 1,

9 9 9 7
x y z        

 
+ + =  + + + − =  + + + − =  = − = 

 

( ) ( )0 0 0, , 0,0, 1x y z = − ,  ( )0 0 0

3 6 2
, , , ,

7 7 7
x y z

 
=  
 

 
 

 

 

3p 

2. 
a) Verifică ( )

1
,

2
x x x G =    

 

 

2p 

Verifică ( ) ( )
1 1 1 1

, 0,1
2 2 2 2

x x x x x x G e =   =  =    =   este element neutru 3p 

b) Numărătorul   0x y  , pentru ( ), 0,1 .x y  
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care este adevărat pentru ( ), 0,1x y . 

Deci ( )0,1x y   pentru ( ), 0,1x y . 
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0a = sau 1a =  

Cazul 0a =  se respinge, deoarece atunci f ar fi constantă și nu ar putea fi izomorfism. 

Rămâne 1a =  1b =  
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SUBIECTUL al III-lea                                                                                                         (30 de puncte) 
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2.a) :F → o primitivă a lui f     F derivabilă pe ( ) ( )'F x f x = oricare ar fi x
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